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ABSTRACT

The problems addressed by this research were to establish an efficient set of data structures

and functions to implement a realistic open ocean environment, to create a conceptual

representation of the ocean surface that realistically animates waves in real time and coordinates the

dynamic motions of simulated marine vehicles sailing on the surface, and to establish an object-

oriented paradigm for the incorporation of graphical user interface (GUI) components into the

present NPSNET structure.

The approach taken for this research was to develop a set of C++ classes that contained both

the necessary data and methods to describe the ocean surface as a spatially organized hierarchy of

dynamic geometric structures. The wave form associated with the surface was designed as a

separate object to allow it to influence the periodic motions on surface marine vehicles as well as

dictate wave height at any point and time.

The results of this work are the Ocean and Wave classes, an extension to the NPSNET

Vehicle class, and the modification of an OSF/Motif application framework library that supports

the implementation of an IRIS Performer simulation.The extensibility of the system is enhanced

through the expanded use of C++ objects, which was proven by the successful integration of

NPSNET into the Motif application framework.
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I.  INTRODUCTION

A.  BACKGROUND

NPSNET is a real-time, three-dimensional (3-D), distributed interactive virtual

world being continually developed by researchers and students in the Graphics and Video

Laboratory of the Department of Computer Science at the Naval Postgraduate School. It

began as a low-cost, workstation based simulator which used a locally developed network

protocol and runs on commercially available Silicon Graphic Inc. (SGI) workstations

[YOUN93]. In the versions that followed, added functionality and improved capabilites

were added, resulting in a suite of complementary software applications that push forward

the state-of-the-art in distributed virtual worlds. This research is a further effort in that

direction.

B.  MOTIVATION

1. The need for an open ocean environment

In the current implementation of NPSNET, the virtual battlefield is a limited area

defined by a series of polygons that approximate the terrain. While this limited area is

sufficient for land battles and the associated close air support, naval and air warfare takes

place over a much broader area. Deep draft surface vessels and submarines, however, will

operate in areas that are surrounded on all sides by many miles of water. In order for

networked virtual world simulation to be an effective training and tactical development

platform for naval personnel, the domain of NPSNET must be extended to include an ocean

environment. The next logical extension to NPSNET is the addition of the littoral regions,

followed by the open ocean. However, it makes sense from a design perspective to

implement the open ocean first, since the interaction of waves and coastline is a

conceptually more complex problem than the implementation of wind driven waves over

deep water.
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2. The importance of wave motion in visual simulators

In currently installed submarine attack center trainers and ship’s periscope and

navigation (SPAN) trainers, the ocean surface is modeled as a flat blue surface over which

graphical images of ships are set in motion. Depending on the type of training desired, the

submarine crew uses these images to practice anti-surface warfare (ASUW) periscope

approaches, contact avoidance during inbound and outbound surface transits, or safe

approaches to periscope depth. In those cases where the periscope window is relatively

close to the surface (e.g. during an ascent to periscope depth), the motion of the seas is a

large factor influencing the effective range at which the periscope officer can identify

vessels which could present a collision hazard to the ship. It also plays a crucial role in the

time required for the periscope officer to assess the number of reticle subdivisions occupied

by a surface contact. This assessment, the key piece of raw data needed for visual range

estimation, is more difficult to perform if the periscope window is rocking back and forth,

and the reticle markings are rarely vertically aligned. The result of this difficulty is a trade-

off between reduced range accuracy and increased contact observation time. Increased

contact observation time is particularly undesirable in the ASUW approach scenario, since

prolonged periscope exposure increases the possibility of counter-detection.These factors

are not addressed in the visual simulation systems currently used. [COVI92]

From the surface anti-submarine warfare (ASW) perspective, a dynamic ocean

surface is necessary to more accurately model both visual and radar detection of submarine

periscopes. In a flat blue ocean simulation, visual identification of small foreign objects,

e.g. a periscope mast, is unnaturally simple. Similarly in a computer-modeled radar, the

absence of sea clutter caused by the reflection of radar waves off wave peaks will produce

an artificially inflated accuracy of the detection and identification of periscope masts.

3. The importance of realistic vehicle motion

Marine vehicles, including both surface ships and surfaced submarines, maneuver

in what is essentially a two dimensional world. They are restricted to operation at sea level,
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minus the draft necessary to establish neutral buoyancy. Any excursions above or below

this level will result in a net force on the vehicle restoring it to its original level. To

implement realistic marine vehicle motion, however, these periodic excursions above and

below the neutral buoyancy level must be modeled in a graphical simulation. Changes in

the vehicle’s orientation in the world, resulting from such effects as pitch and roll, must also

be modeled in order to achieve visual realism. To a large extent, these rotational and

vertical motions are closely linked to the motion of the ocean surface itself. Therefore a

computer model which implements wave dynamics should also be applicable to more

realistic ship dynamics.

By incorporating a dynamic ocean surface in NPSNET, ship and submarine crews can

supplement their training initially with an off-the-shelf computer hardware platform, and

later incorporate this same level of realism into existing trainers by means of hardware

upgrades and software modifications.

C.  OBJECTIVES

The objective of this research is to design an open ocean environment utilizing the

Silicon Graphics Iris Performer [SGI92] visual simulation toolkit, and incorporate this

environment into NPSNET IV, the networked virtual world project currently under

development at the Naval Postgraduate School. To achieve this objective, the environment

should consist of, as a minimum, a dynamic model of the ocean surface with user control

over essential wave parameters such as wavelength, amplitude, and direction. It may also

allow the projection of varying texture images consistent with the sea state being modeled.

Furthermore, the current NPSNET vehicle class hierarchy must be extended to provide for

the control of ship motion in a manner consistent with the generation of the moving ocean

surface.

A secondary objective of this research is to provide a framework for the incorporation

of essential graphical user interface (GUI) components for both this application and future

modifications to NPSNET. By constructing an object-oriented framework for the addition
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of user-interface components, development time spent by future researchers can be made

more productive. The current implementation of NPSNET, written in C++, utilizes object-

oriented techniques in the control of virtual world objects such as vehicles, weapons, and

stationary objects [ZYDA93]. This concept will be extended to allow the creation of basic

program control objects that drive the overall simulation.

D.  ORGANIZATION

The previous sections of this chapter have stated the objectives and motivation for

providing an open ocean environment for NPSNET. Chapter II provides an overview of the

NPSNET project, including its purpose, history, general program design, and current

research being conducted. Chapter III discusses the design considerations of the dynamic

ocean surface, including an overview of applicable wave theory, survey of earlier work,

and computational considerations. The design of a realistic model of marine vehicle

dynamics is detailed in Chapter IV, including a discussion of applicable theory, earlier

work, and alternative representations. Chapter V gives a brief overview of the Motif

graphical user interface (GUI). Next, Chapter VI presents the design of a generic

application framework which runs Performer within a Motif-based application, while

Chapter VII details the implementation of this research into the NPSNET project. Chapter

VIII presents the conclusions reached during the course of this research, including

performance analysis, advantages, limitations, suggestions for software improvements, and

areas for suggested further research. Finally, the appendices contain the source code for the

Performer extensions to the Motif application frameworks library.
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II.  OVERVIEW OF NPSNET

A.  PROJECT PURPOSE

In 1990, students in the Naval Postgraduate School’s (NPS) Department of Computer

Science, working in the school’s Graphics and Video Laboratory, began a project known

as the Naval Postgraduate School Networked Vehicle Simulator (NPSNET). NPSNET is a

low-cost, real-time, networked vehicle simulator which runs on the Silicon Graphics IRIS

family of graphics workstations [ZYDA93]. Its primary purpose is to provide a means

through which the NPS students, primarily U.S. military officers, can experience the

potential benefits of networked virtual environments on the tactical training of today’s and

future military forces, as well as participate in its development. Students participating in

this research gain the experience of working in a large project and learning where major

difficulties in software evolution are, while contributing to the state of the art in virtual

environment software technology. At future commands, these students will be intimately

aware of both the benefits and limitations of networked virtual environments.

B.  GENERAL PROGRAM DESIGN

NPSNET’s source code is written in C++ to take advantage of the object-oriented

paradigm offered by C++ classes. Utilizing this paradigm, virtual world objects such as

vehicles and weapons are implemented in a class hierarchy that provides for inheritance of

properties from more abstract classes. In this way, for example, a tank object and a jeep

object can share the properties belonging to all land vehicles, such as the inability to float

or fly, while specializing in those areas that they alone possess, such as maximum velocity,

or the existence of a gun turret. This object-oriented design also serves to ease the process

of expanding the virtual environment to include a wider variety of vehicles, and other

objects.

NPSNET follows the general conventions of a Performer application as seen in

Figure 1. During the initialization phase, a configuration file is read which specifies any
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desired configuration parameters, such as window size, multiprocessing mode, frame rate,

multisampling, etc. The configuration file also specifies file names that will be read to form

the visual database and provide network and sound support.

NPSNET generally runs within a single channel, but has added the feature of a

“video missile” which shows the missile’s view of the scene as it flies toward its target.

This effect is accomplished by the addition of a second channel to the single graphics

pipeline, forming a “picture within a picture.” The channel configuration also includes the

initialization of such channel-dependent features such as a pfEarthSky, pfFog, and pfLight.

The pfScene in NPSNET is composed of many elements, the number and

composition of which will vary during the execution of the program. As players join and

leave the network, for example, the local application must add their graphical icons to the

local scene. To avoid any unnecessary delays in the local application, all defined models

are loaded at this time, and instances of these models are “cloned” when needed. NPSNET

also uses this portion of the program to perform network initialization, and the pre-loading

of texture image data. The time required to perform this initialization is considerable;

approximately seventy two seconds elapse from application start to the first drawn frame.

To provide a level of user confidence that the application has not “locked up” during this

initialization phase, a call to pfSync is made, which allows the forked processes to start up,

and a scripted sequence of opening credits and program status reports is generated by the

draw callback function.

In addition to the standard Performer structure outlined above, NPSNET forks two

additional processes to run in parallel with the Performer application, the Flight Control

Stick (FCS) input process and the network communications process. A more detailed

description of NPSNET can be found in [PRAT93][ZYDA93]

C.  RECENT RESEARCH

Research associated with the NPSNET project is as varied as the backgrounds of the

students involved, which span multiple armed service branches, and multiple warfare
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specialties within each branch. One recent accomplishment has been the development of

real-time environmental effects such as smoke plumes, fire, and dust trails [CORB93].

Another has been the redesign of the NPSNET network interface to operate with standard

Distributed Interactive Simulation (DIS) protocol data units (PDU’s) versus an original

local architecture [ZESW93]. The immersive nature of the NPSNET virtual world (VW)

has been further enhanced by the development of the NPSNET Spacialized Sound Server,

providing spatialized aural cues to events in the VW.

As NPSNET research continues, the incorporation of autonomous forces into the VW

continues to be a vital issue. Computer-driven players, originating from workstations

communicating over the network, use scripted paths, collision-avoidance, and rule-based

algorithms to interact with the human players in the VW. Work continues in this area to

provide players whose behavior forms an acceptable substitute for an equal number of

human players, thus adding to the believability of the simulation. Other areas of research

involve improvements to the computer-human interface, such as the potential of

incorporating a head-mounted display (HMD), and the recent inclusion of a stereoscopic

display using the Stereo-Graphics CrystalEyes system.
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Performer Initialization

Allocate shared memory
for forked processes

Fork off separate
application, cull,

and draw processes

Set up application
configure pipes,
load database

Main simulation loop
update viewpoint
compute DCS’s

update dynamics, etc.

pfExit

Figure 1 The Performer Application Structure
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III.  OCEAN DESIGN CONSIDERATIONS AND
IMPLEMENTATION

A.  OVERVIEW OF WAVE THEORY

The study of waves is an extremely complex topic, as wave phenomena take on such

diverse forms as the ripple a thrown pebble makes in a still pond, the wake of a ship, or the

white caps generated by a storm at sea. These phenomena are all examples of surface

waves, and as such influence the appearance of the ocean surface, and the behavior of

marine vehicles on the surface. Other wave phenomena include internal waves, which are

found in areas where water density changes drastically, such as at thermal layers. Another

category of waves is the inertial wave, which is formed from the earth’s rotation, in much

the same way that winds are generated in the atmosphere [EARL84]. These waves

generally have very long periods (several minutes in duration), and as such can be ignored

for the purpose of marine vehicle dynamics [NEWM77].

Surface waves themselves can be described as having both linear and nonlinear

behavior. The periodic ocean swells resulting from the gradual buildup of wind-driven

wavelets can be accurately described by simple periodic functions, i.e. sinusoids or

trochoids [BLAG62]. Breaking waves, such as those near shores and reefs, or those caused

by the motion of a ship’s bow through the water, demonstrate the nonlinear effects also

present in surface waves [PEAC86]. In open ocean applications the effect of nonlinear

wave behavior on large draft vessels can be neglected. These waves can be later

approximated through visual means only, such as adding a noise texture.

Waves are found in many areas of physics; sound waves, light waves, seismic waves,

etc. [HALL81]. But surface water waves possess a unique characteristic, in that the water

particles themselves travel in closed, or nearly closed orbits. The observed propagation of

waves is merely a propagation of wave shape resulting from the timing of these individual

orbits, as can be seen in Figure 2.
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The observed shape of many large ocean waves, those with a long shallow trough and

a sharply defined peak, are best approximated by a trochoid or cycloid. A trochoid is the

shape described by the path a point on a disk would trace through space, while the disk is

rolled along a flat surface. If the point lies on the perimeter of the disk, the peak exhibits a

discontinuity in its slope, and the curve is referred to as a cycloid. Trochoids and cycloids

are described mathematically by a pair of parametric equations, in which the x and y

variables are defined as a function of a third variable t. The basic cycloid equation is:

     x = k(t - sin(t)) (Eq 1)

     y = k(1 - cos(t)) (Eq 2)

The basic waveform resulting can be seen in Figure 3. A simple inversion of the

second equation, and adjustment to the parameter k, can form a realistic representation of

water waves, as shown in Figure 4.

Figure 2 The circular motion of waves
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Since the primary surface waves encountered by and affecting marine vessels are

those generated by winds, it is beneficial to review the process of ocean wind wave

generation. Wind currents generate variations of air pressure over the surface of the water,

resulting in “ripples” or “wavelets.” As these wavelets are generated, they present a surface

Figure 3 A basic cycloid waveform

Figure 4 Water waves approximated by a cycloid
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against which the winds can directly impinge. This impingement of the wind against the

sides of the wavelets increases the rate of energy transfer from the wind to the water, thus

accelerating the growth of the wave. Wave height will continue to grow until the ratio of

wave height to wave length reaches a value of approximately one to seven. When this latter

condition is reached, the individual waves will break, forming white caps [EARL84].

A single wave component can be fully described through the parameters of

amplitude, wave length, period, phase angle, and direction. The starting equation then for

a sinusoidal wave component is:

(Eq 3)

whereζ is the value of the wave function,ζa is the wave amplitude, k = 2π/L is the wave

number, L is the wave length, x is the horizontal distance from the wave origin, Vw is the

wave velocity, and t is the time variable. For ocean waves, the wave velocity is a function

of the wave number and the water depth h given by

(Eq 4)

When the water depth becomes sufficiently large, the tanh function approaches 1, and the

wave velocity essentially becomes a function of the wave number, and therefore of the

wave length. In these terms we get:

(Eq 5)

Therefore a complete description of a single wave component can be made by specifying

only the amplitude, wave length, and direction [BHAT78].

In the oceans, the appearance of the sea state is described not by a single sinusoidal

wave component, but by the sum of many individual wave components of varying

amplitudes, wavelengths, and directions. And yet careful observation over time reveals an

average wave height, and general direction of the seas, which has a direct bearing on

piloting decisions. The implementation of a computer model of the ocean surface should

ζ ζa k x Vwt– 
 sin=

Vw
g
k
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be able to generate the defining parameters for each wave component, based on a desired

overall amplitude, wavelength, and direction. One way to accomplish this is to declare an

arbitrary average wave height, wave length, and direction, then generate the parameters for

the individual wave components by some reasonable weighting function. The result of the

weighting function should be that the amplitude of an individual wave component be

maximum when the direction of the wave is coincident with the desired direction of the

seas, and should be minimum when perpendicular. Wavelength may be computed in a

similar manner.

There is an extensive body of knowledge regarding the theory of ocean wave

generation and propagation, and a number of models and waveforms that describe and

predict ocean wave behavior. The motivation for this research, however, does not lie in the

accurate scientific visualization of ocean waves, which at present is the realm of massively

parallel supercomputers. Rather, the goal of this research lies primarily in obtaining a

model for ocean wave generation which is reasonably realistic, yet falls within the

computational constraints of real-time applications. For this reason we model the ocean

surface as a sum of simple sinusoidal waves.

B.  SURVEY OF EARLIER WORK

There are several examples of research in which ocean waves have been modeled in

computer graphics. In one early effort the ocean surface was generated by raytracing a

complete height field [MAX81]. Noise texture mapping has also been utilized to describe

wave trains [PERL85]. In this technique, band-limited noise was summed up, thus

comprising relatively complex patterns of waves and ripples. In both of these cases

however, the appearance is only valid from a significant height above the surface. For the

purpose of this research, the model must be realistic when viewed from a position close to

the water surface.

In 1986, Peachey developed a model of ocean waves which approached and broke

upon a shore. This model was rendered using an off-the-shelf scan-line rendering program.
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Peachey’s model approximated the cycloidal nature of natural ocean waves by representing

shallow waves with a sinusoidal function and steeper waves with a quadratic function,

providing a linear blending between the two. This model also took into account the varying

depth of the water as the waves approached an irregular beach, and provided a good visual

effect of spray through the use of a particle system. The images produced using this model

took approximately one hour of CPU time on the equivalent of a VAX 11/785 FPA.

Included in this time was approximately two to five CPU minutes for the generation of the

phase function table for each of three wave components [PEAC86]. Another limitation of

this model, besides the fact that it could not produce real-time animation, is the fact that

each wave component was fixed in amplitude. This was not a problem in Peachey’s effort,

however, since the end goal was a computer-generated animation sequence, not a real-time

virtual world.

Also in 1986, Fournier and Reeves presented a model for ocean waves based on the

Gerstner, or Rankine model, in which the particles of water describe circular or elliptical

orbits. Again the depth of the water is taken into account and allows for refraction of waves

as well as the formation of breakers. The Fournier and Reeves model mathematically

describes the circular orbits of individual water particles using a variation on the cycloid

parametric equations presented earlier. Modifications were made to model the effect of

wind on the crests of the waves, and to impose a degree of the randomness found in the real

sea. The ocean surface was graphically modeled as a set of bicubic patches. Again, this

model was not meant to approach real-time graphics speed, as the rendering of these

patches in a single frame took as little as two to as many as ten hours on a Computer

Consoles Power 6/32 computer [FOUR86].

C.  VIRTUAL WORLD SIZE VERSUS POLYGON COUNT

In every field of research, decisions must be made which involve trade-offs between

two or more desired goals. In the field of economics this is referred to as the opportunity

cost of a capital expenditure. And in computer science there have been several such trade-
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offs, e.g. memory cost versus execution speed. In the field of computer graphics in

particular, one of the key issues has been image quality versus execution speed. At one

extreme is the decision to render images using ray tracing algorithms; the images generated

by ray tracing have an extremely high image quality but can easily take several minutes to

many hours to render, depending on the detail desired. Obviously this extreme is

unacceptable for real-time graphics applications, given present hardware limitations. The

goal then is to produce the highest quality image that can be updated as necessary and

rendered at an acceptable frame rate.

The terrain database hierarchy used in NPSNET IV is predicated in part upon the

premise that the shape of the terrain is random and fixed in time. In the case of hills, valleys,

and other geological features this assumption is valid over the duration of a real-time

application. Varying the level of detail of such a varied visual database in order to minimize

the number of polygons being sent down the graphics pipeline has been a major

accomplishment in previous research on the NPSNET project. Level-of-detail nodes

(pfLOD) are provided as part of the Performer toolkit to facilitate this effort, so that in a

properly organized database, the number of polygons required to generate objects or terrain

decreases in inverse proportion to the distance from the view point. In actuality, the level-

of-detail provided by pfLOD’s does not vary continuously, but consists of a finite set of

pfLOD’s each of which has a specified range. Provision is made for overlap between

adjacent pfLOD’s to avoid image discontinuity.

When designing an ocean database, this premise of fixed and random features is no

longer valid. Instead, the ocean surface can be described at any point in time based upon

the sum of the individual wave components defined for the area. Therefore the only

predefined database for the ocean is a mesh of polygons whose vertices each define the

wave height at that particular point on the surface.
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D.  THE OBJECT-ORIENTED OCEAN DATABASE

1. The N-ary tree

The final design implementation of the ocean was accomplished using an object-

oriented hierarchy. The top level of this hierarchy, designated as the OceanMaster class,

encompasses a pfSwitch, and contains three instances of the Ocean class. The Ocean class

provides a single class definition for all Performer nodes below the pfSwitch declared in

the OceanMaster class. The Ocean class has two constructors, one public and one private.

Both constructors are designed so that they recursively subdivide the ocean surface, first

horizontally and then vertically, until the angular spacing is such that a single geoset can

be constructed. The public constructor takes care of allocating storage for, and computing

the coordinates of the vertex, texture, and normal arrays. Pointers to these arrays are passed

as arguments to the private constructor, so that a single vertex array is allocated for the

entire Ocean class hierarchy.

The effect of this organization is such that an n-ary tree is constructed, with n

being defined as a constant in the newOcean.h file. As currently implemented, n is defined

as six. The various instances of the Ocean class can be seen visually in Figure 6. The spatial

organization achieved by this recursive subdivision is similar to the quadtrees used in the

NPSNET terrain database [MACK91], and has the same goal of improving the culling

efficiency of the Performer simulation.

The vertices defined for the ocean database are defined such that all vertices lie

on a fixed number of vectors extending from the origin, with the vectors themselves spaced

equally around the origin. In this manner the number of vertices which subtend the

horizontal field of view is constant, regardless of distance from the viewpoint. Furthermore,

the spacing of vertices along a single vector is computed in such a fashion as to ensure that,

at a predetermined height-of-eye, any two adjacent vertices on a single vector will subtend

a constant vertical angle as well. Figure 5 shows this arrangement from a view directly

overhead. Note that the polygons cover a progressively larger surface area as distance from
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the origin increases. A continuously varying level-of-detail is accomplished without the use

of pfLOD’s. Also note that the radial lines extending from the origin provide continuity for

the polygons as the level-of-detail progressively decreases. There is no need in this design

for seam-stitching or added polygons at level-of-detail transition points. The effect of

constant angular spacing is evident in Figure 7, which shows the view from the nominal

height of eye, looking toward the horizon with a -20 degree pitch.

Figure 5 Wireframe view of ocean surface from directly overhead
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1st level Ocean object
hangle = 60
vangle ~= 90

2nd level Ocean Object
hangle = 10
vangle ~= 90

3rd level Ocean Object
hangle = 10
vangle = 15

Individual pfGeode

Figure 6 The Ocean Class Spatial Hierarchy
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2. Multiprocessing considerations

As was mentioned above, the OceanMaster class contains three instances of the

Ocean class, each of which is connected to the visual database by means of a pfSwitch. This

creates a three element buffer to prevent inadvertently altering the data that is currently

being used for rendering by the draw process. In the default multiprocessing mode, the

pfConfig function causes the application to fork off separate application, cull, and draw

processes which operate on the visual database in a pipeline fashion, i.e. while the

application process is working on frame n, the cull process is working on frame n-1, and

the draw process is rendering frame n-2. Following this convention, the application process

needs three buffers; it will be processing the ‘(n+2) mod 3’th buffer at the same time the

draw process is rendering the nth buffer. The only methods needed for the OceanMaster

class are the animate() method, which selects the next buffer to animate and updates the

active child of the pfSwitch upon completion, and the predraw and postdraw callbacks,

Figure 7 Wireframe view of ocean surface at nominal height of eye,
-20 degree pitch angle
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which are used to ensure that the application does not attempt to animate the child of the

pfSwitch which is currently being drawn.

3. The Wave class

The waveform definition, which describes the appearance of the ocean surface at

any instant in time, is implemented as a separate object, a global instance of the Wave class.

As was seen above, due to multiprocessing considerations inherent in the Performer

application paradigm, three instances of the Ocean class are instantiated in a buffer

arrangement. There is no need to instantiate three instances of the Wave class, however.

Although the three Ocean buffers may differ in their height values due to the time

differential between successive calls to their animate() methods, the parameters defining

the basic waveform do not vary, and thus one instance will suffice. Taking advantage of the

fact that only one instance of the Wave class will be instantiated in a single application, a

global pointer to the Wave class is defined along with the Wave class definition itself,

“theWave.” As long as the Wave object is created by the application prior to the

OceanMaster object and any other objects that might need to access it, this arrangement

works quite well.

The Wave class can be instantiated to be composed of any discrete number of

separate wave components. A single direction, amplitude, and wavelength are also

provided as arguments to the constructor. The algorithm utilized by the

update_wave_parameters() function then takes these values and constructs the individual

values for each wave component. The logic is such that the wave components are

distributed evenly in the  range about the axis of the specified direction. The angular

separation between the direction of a single wave component and the overall direction axis

is used to compute a weighting factor which is then used to adjust the amplitude of the

component. The end result is that the wave component whose direction has the greatest

angular displacement from the desired direction will also have the smallest amplitude. To

simplify the process of summing individual wave components, each component is further

90
°±
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broken down into its two component vectors. When the wave height is computed for a

specific x-y coordinate, for example, the x value is considered first, its displacement from

the y-axis used to generate a sum of all the wave component vectors which lie along the x-

axis. The same is done for the y value, with the resultant sum being the total wave height

at that point for the given time. An example utilizing this method for three wave

components is given in Figure 8.

Wave 0

Number of waves: 3
Amplitude: 15.0

Wavelength: 600.0
Direction 60.0

Amplitude: 5.0
Direction 60.0

Wave 1
Amplitude: 3.53
Direction 15.0

Wave 2
Amplitude 3.53
Direction 105.0

Wave 0- x component
Wavelength 300.0

Wave 0- y component
Wavelength 519.6

Wave velocity 21.64 Wave velocity 28.48

Figure 8 Generation of a simple wave spectrum

waveHt x y,( ) XwaveHti x( )
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The decision to model the wave form as an object separate from the ocean itself

deserves further justification. The same wave equations which define the motion of the

ocean surface also serve to define the periodic motions of the marine vehicles which sail

on the surface. The theory behind this motion and the utilization of the Wave class in

predicting it are discussed in the following chapter.
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IV.  SHIP MOTION

A.  OVERVIEW OF MARINE VEHICLE DYNAMICS

The field of modern marine vehicle dynamics goes back to the year 1737, where it

has its roots in Euler’s theory of motions in still water [BLAG62]. In his theory, Euler

likened the oscillatory motion of a floating vessel to a pendulum, ignoring any effects of

water resistance or other external forces acting on the vessel. His findings were published

in the textShip Science in 1749. In this same period, such noted mathematicians as Poisson

and Bernoulli also contributed to the theory of oscillatory motion of floating vessels. Other

noted pioneers in this field include Froude, Krilov, and Joukowsky [BLAG62].

As is true in the kinematics of any rigid body, marine vehicles experience six types

of motion, three translational and three rotational. In the following discussion, a rectangular

earth coordinate system is used, in which the x axis points north, the y axis points east, and

the z axis points down. A body coordinate system for the vessel is also used, in which the

x-axis runs longitudinally down the ship, the y-axis runs athwartships, and the z-axis runs

up, as shown in Figure 9.

x

y

z

Figure 9 The marine vessel body coordinate system
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In determining the position of a ship, mariners typically consider the latitude,

longitude, course, and speed to be a complete description. In the rectangular coordinate

system being used, the latitude would correspond to the x-coordinate, the longitude the y-

coordinate,1 the course the rotation about the z axis, and the speed a rate of change of the

x-y coordinate values.

It is apparent to anyone who has watched a ship moving through the water that these

are values do not provide a complete description of a ship’s position at any instant of time.

Moving ships are almost always in some sort of oscillatory motion as well as sustained

motion over ground, and these oscillatory motions are comprised of all six types:

Surge - motion forwards and backwards in the direction of travel2

Sway - athwartship motion

Heave - vertical motion

Roll - angular motion about the longitudinal axis of the ship

Pitch - angular motion about the transverse axis

Yaw - angular motion about the vertical axis

The theory underlying these oscillatory motions is extensive and is thoroughly

discussed in various texts [NEWM77][BHAT78][BLAG62][DEBE57]. No attempt will be

made here to duplicate that effort. In order to lay the foundation for the implementation of

a ship model, however, a brief summary is in order.

1. Encounter frequency

The waves in the ocean travel with a particular frequency relative to the earth. As

a ship travels through the water, the rate at which it encounters the waves depends on its

speed and course relative to the seas. If the seas are directly abeam, the encounter

1. This analogy is used for illustrative purposes only. It is not completely accurate, since latitude
and longitude are, of course, angular measurements. Degrees of latitude can be translated directly
into a linear displacement (1 degree is approximately 60 nautical miles), while the linear displace-
ment associated with the degrees of longitude varies with latitude.
2. The surge, sway, and yaw components are not purely oscillatory, since they lack the inherent
restoring forces provided by gravity and buoyancy. If the exciting forces causing the linear motion
acts alternately from opposing directions, however, the motion will be oscillatory [BHAT78].
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frequency, referred to mathematically asωe ,is the same as the wave frequency. If the ship

is driving through head seas, the encounter frequency is greater than the wave frequency.

And lastly, if the ship has following seas, the encounter frequency is less than the wave

frequency; indeed, it may be in the reverse direction of the seas, if the ship is overtaking

the waves. Encounter frequency is given by

(Eq 6)

where V is the ship’s speed and m is the encountering angle, measured clockwise from the

direction of wave travel to the direction of ship’s heading [BHAT78].

2. Heaving

Consider for a moment, the heaving motion of a ship. If the ship is somehow

forced deeper into the water, the buoyant force on the ship will now be greater than the

force of gravity, resulting in a net force upward after the initial exciting force is removed.

The ship will now be accelerated upward back to its equilibrium position. However, the

ship’s inertia will carry it past this point and cause it to experience a net force acting

downward. The damping force provided by interaction with the water will result in an

eventual return to the equilibrium state. In the case of a periodic exciting force, such as that

found when a ship is moving through ocean waves, the vessel will not return to equilibrium

but will instead reach a steady state condition in which it oscillates with a constant period

and amplitude. This is referred to as forced, damped, heaving motion. It can be predicted

mathematically by

(Eq 7)

where A is a constant determined from the initial conditions, v is a decay constant,ωd is

the circular frequency of the damped oscillation, b is the phase angle, za is the amplitude of

the forced motion,ωe is the circular frequency of the exciting force, andε2 is the phase

angle of the forced motion relative to the exciting force [BHAT78]. In the steady state
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condition the first term has decayed away and can therefore be ignored for the purposes of

this model.

3. Pitching and Rolling

Pitching and rolling are also considered pure oscillatory motions. In these angular

motions, notwithstanding, the moments rather than the forces must be considered. In both

pitching and rolling, the angular motion results from the action of the following moments:

1. Inertial moment.

2. Damping moment.

3. Restoring moment.

4. Exciting moment.

The pitching moment is described in the equation

. (Eq 8)

The first term describes the inertial moment and is the product of the virtual mass moment

of inertia a and the angular acceleration of pitching . The second term describes the

damping moment and is the product of the damping moment coefficient b and the angular

velocity . Likewise, the third term is the restoring moment in which c is the coefficient

and q the angular displacement. These three terms will, in equilibrium, balance the exciting

force which can be seen to vary in time with the encounter frequencyωe.

The equation of motion for rolling is virtually identical to that for pitching, since it is

a result of the same moments. It is important to note, however, that the coefficients for the

various moments, a, b, c, and M0 are determined separately for each kind of motion

[NEWM77].
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When a ship is travelling through waves, the motions of pitch and roll reach a steady

state condition just as the heaving motion discussed earlier. When this steady state

condition is reached, the equation for pitching becomes simply

(Eq 9)

and rolling is defined by

. [BHAT78] (Eq 10)

B.  DETERMINING THE AMPLITUDE OF PERIODIC SHIP

MOTION

As was previously discussed in the overview of marine vehicle dynamics, a vehicle’s

behavior when experiencing the effects of heave, pitch, and roll can during steady state

conditions be described by simple periodic functions. The amplitudes by which these

functions are multiplied, specificallyza, qa, and fa, will vary with the angle of encounter

with the seas and with the energy of the wave spectrum. It is the determination of these

amplitudes, then, that is the key to realizing a workable model for approximating periodic

ship motion in a computer application.

The values obtained for the heave, pitch and roll amplitudes are of keen interest to

naval architects, since it is these values that determine the stability of ships in a seaway.

Excessive degrees of roll can result in capsizing ships in rough seas, just as excessive pitch

will result in shipping water over the forecastle, causing equipment damage and possible

loss of life, or propulsion system degradation due to the screw coming out of the water.

There are two generally accepted methods for determining the heave, pitch, and roll

coefficients, the analytical method (using strip theory) and data obtained from model tests.

In either case the coefficients, referred to as response amplitude operators (RAO) or the

transform spectrum, are fixed for a particular vessel, encounter frequency, and direction

[BHAT78]. This leads to the conclusion that the RAO’s, however determined, will be static

for the duration of the computer simulation. An ideal method of implementing the RAO
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values in the application, then, is by reading the values into an array from an external file

during initialization.

C.  MODELING THE EFFECT OF CONTROL SURFACES AND

PROPULSORS ON SHIP MOTION

In addition to the periodic motions discussed in this chapter, the effects of control

surfaces and propulsors must also be modeled in order to achieve realistic control over the

virtual vehicle. It is a trivial matter to accept a user command to turn the ship or change the

speed and implement this using a fixed rotation or translation rate, respectively.

Unfortunately, this results in an instantaneous change in the speed or turning rate, and

effectively negates the effect of immersion into the virtual world. The behaviors exhibited

by the vehicle, while they do not have to be 100% scientifically accurate, must approximate

real world behavior closely enough to be both believable and effective in training for the

real world.

In the case of propulsors, the basic effect on the ship is a force along the longitudinal

axis of the ship, either ahead or astern. The resulting motion has been previously described

as surge. The magnitude of the force is a function of the blade speed and the blade pitch, as

well as the initial velocity of the fluid through which the blades are turning. In gas turbine

powered ships, the screw turns at a constant speed while the blade pitch is adjusted to

change the thrust; conversely, a steam powered ship maintains a constant pitch and varies

the shaft turning rate. As an illustration of how fluid velocity affects propulsor effect,

consider a ship which is dead in the water suddenly increasing its turns to 200. The resulting

energy will be to a large extent dissipated in cavitation and wave formation. On the other

hand, a ship which is already making 10 knots through the water will convert more of this

energy into useful thrust.

While the propulsor moves the ship over the ground, the rudder of a ship imposes a

torque on the hull, resulting in an angular motion about the vertical z axis. This motion has

previously been described in terms of yaw. Rudder design is predicated upon the ship
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making headway. Rudder motion has an effect on ships making sternway, and even on

ships that are virtually dead in the water, although the effects are less predictable, and vary

with the currents and degree of backwash from the screw. Even in real life shiphandling,

the effects of rudder motion on ships making sternway are difficult to predict, and vary

widely according to ship design.

The torque imposed on the ship by the rudder varies with the speed of the ship and

the angle of the rudder relative to the direction of motion. Torque is simply a translation of

the energy imparted by the surrounding water molecules on the rudder surface, either

through a pressure differential or by direct impingement.

For the purposes of a real-time simulator, a high degree of realism can be obtained

for both propulsors and control surfaces by computing the forces and torques as a function

of blade rate, ship’s speed, rudder angle, etc. These values can then be summed with other

forces and torques, mainly due to damping, to produce an acceleration for the non-periodic

motions of the ship. The acceleration is then translated into a per-frame velocity and per-

frame position by the Runge-Kutta method of solving second order ordinary differential

equations (ODE) [PRES88]. The C++ implementation of the Runge-Kutta method is

shown in Figure 10.
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void Runge_Kutta_4th_order
(float (*f)

 (float,float, float),
float (*g)

 (float, float, float),
float *x0,float t0,float *y0,
float h)

{
// *f and *g are the two functions we want to
// integrate. h is the step size. Results are
// returned in *x and *y

float k1 = f(*x0, t0, *y0);
float l1 = g(*x0, t0, *y0);

float k2 = f(*x0 + h * 0.5f * k1,
t0 + 0.5f * h,
*y0 + h * 0.5f * l1);

float l2 = g(*x0 + h * 0.5f * k1,
t0 + 0.5f * h,
*y0 + h * 0.5f * l1);

float k3 = f(*x0 + 0.5f * k2,
t0 + 0.5f * h,
*y0 + h * 0.5f * l2);

float l3 = g(*x0 + 0.5f * k2,
t0 + 0.5f * h,
*y0 + h * 0.5f * l2);

float k4 = f(*x0 + h * k3,
t0 + h, *y0 + h * l3);

float l4 = g(*x0 + h * k3,
t0 + h, *y0 + h * l3);

*x0 = *x0 + (h/6.0f) *
(k1 + 2.0f*k2 + 2.0f*k3 + k4);

*y0 = *y0 + (h/6.0f) *
(l1 + 2.0f*l2 + 2.0f*l3 + l4);

}
Figure 10 C++ Implementation of 2nd Order ODE using the Runge-

Kutta Method
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D.  USING THE WAVE OBJECT FOR VEHICLE MOTION

As was described in Chapter III, the wave form is implemented as an object separate

from the implementation of the ocean surface itself. This decision was made since the

periodic motions of the marine vehicle will, in steady state, have a period equal to that of

the exciting force. In this case, of course, the exciting force is the wave form. If it is

extended to take into account the encounter frequency the ship sees as it travels through the

waves, and also takes into account the angle of incidence to the waves, the wave object can

return not only the wave height at a particular point on the surface, but also the magnitude

of heave, pitch, and roll motions of the ship. Any changes to the wave object parameters,

such as amplitude, wavelength, and direction will be reflected equally in the ship motions

and the ocean motion.



32

V.  The OSF/MOTIF USER INTERFACE

A.  OVERVIEW OF MOTIF

Motif is a graphical user interface (GUI) produced by the Open Software Foundation,

a non-profit organization founded in 1988 by such industry giants as IBM, Digital

Equipment, and Hewlett-Packard. Built on top of the X Window System (a network-based

window system developed at MIT), Motif uses a set of user interface components referred

to as widgets to provide the framework of the GUI, and allow the developer to use a set of

cross-platform tools and standards to simplify the development of GUI-based applications.

[McMI92]

A widget, in the Motif sense, is similar to a C++ class, in that it consists of both data

structures and procedures. While most widgets are visible in the form of a window, some

widgets are superclass widgets and serve only to provide resources and other characteristics

for subclasses to inherit [McMI92]. Visible widgets take on such familiar GUI component

forms as windows, scroll bars, pushbuttons, toggle buttons, dialog boxes, sliders, and menu

bars. Motif provides a truly rich, and more importantly, standardized set of these widgets

that software developers can use to create an application whose interface is already familiar

to the X workstation user.

Callbacks provide the functionality in a Motif application. A callback is simply a user

defined function which is called by the application if a particular event occurs within a

widget, such as the pressing of a push button or the sliding of a scale. When the callback is

called, it is also supplied with two structures, one of which contains information about the

event which caused it to be invoked, and one which contains any user-defined data the

callback might need [YOUN92].

If a Motif application should perform processing continuously in the absence of input

events, such as in an animation program, the user can supply the appropriate function as a

work procedure. The work procedure, defined and supported through the Xt Intrinsics, will

be invoked whenever the X event queue is empty. Another type of user-supplied function,
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referred to as a timeout, will be invoked after a specified number of elapsed clock ticks,

regardless of the condition of the X event queue [HELL91].

B.  A MOTIF APPLICATION FRAMEWORK LIBRARY

While Motif provides a wealth of user interface components that allow the

application writer to create a standard GUI for his software product, a typical C/C++

application program written with on the Motif library involves a lot of repetition. For

instance, to create a simple one-line text widget, which is positioned at certain location in

a bulletin board widget, and has a specific number of columns, the code would look

something like the lines seen in Figure 11. The process of creating a widget set, registering

callbacks, setting widget resources, and realizing widgets is fairly well defined, and as such

should lend itself to being encapsulated in the form of reusable code. Douglas Young, a

member of the technical staff at Silicon Graphics, Inc. has taken this concept and created

an entire application framework library to simplify the creation of Motif applications

[YOUN92]. Taking an object-oriented approach to define the general architecture of a

Motif application, Young has created such base classes as UIComponent to provide

common functionality to any widget component, such as managing and unmanaging,

creation and destruction, and resource allocation. Two major classes derived from

UIComponent are the Application class and the MainWindow class. Again, these higher

level classes seem fairly simple but provide the framework for many different types of

applications. The Application class allows the registering of multiple MainWindow

objects, so that a single application can consist of more than one main window. The

application framework library is available by anonymous ftp, and a detailed description of

its individual classes can be found in Young’sObject-Oriented Programming with C++

and OSF/Motif [YOUN92].
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C.  A COMPARISON OF PERFORMER AND MOTIF

APPLICATIONS

A good beginning for comparing two application types is in the control structure. A

Motif application, no matter how small or large, consists of four phases:

1. Initializes Xt Intrinsics.

2. Creates widgets and registers any callbacks.

3. Realizes the widgets.

4. Processes events in the application’s main loop.

A Performer application also has a fairly rigid program structure:

1. Performer initialization and configuration.

2. Creates a visual database consisting of pfNodes and registers any callbacks.

3. Executes the Performer main simulation loop, in which the frames are computed,

   culled, and drawn.

In many ways a Performer application closely parallels a Motif application, particularly

when Performer runs as a single-threaded process.

A second criterion for comparing Motif and Performer is the object-oriented

paradigm. Although the Motif and Performer libraries are written so they can be included

int n=0;

XtSetArg(args[n], XmNy, 150); n++;

XtSetArg(args[n], XmNcolumns, 40); n++;

XtSetArg(args[n], XmNrows, 1); n++;

text = XmCreateText(bboard, “text”, args, n);

XtManageChild(text);

Figure 11 Creating a Text Field Widget in C



35

in both C and C++ applications, and therefore are not presented as C++ classes, they still

demonstrate an adherence to the concept of inheritance that has proven so useful in recent

years. Motif widgets are linked by a well defined class hierarchy, including a few abstract

classes that cannot be directly instantiated, such as the Composite, Core, and Constraint

widgets. These higher level widgets, however, define behaviors and resources that are

inherited from lower level widgets [McMI92]. In a similar fashion, Performer pfNodes

form the top level of the Performer node hierarchy and cannot be directly instantiated.

Rather, the pfNode provides a repository of properties inherited by all nodes, such as name,

intersection mask, bounding geometry, callback functions, and callback data [SGI92a].

D.  PROCESS CONTROL CONSIDERATIONS

As was stated earlier, Performer and Motif applications are quite similar in form

when a Performer application is running single-threaded. In a typical Motif application, the

program is designed for sequential execution. This is evidenced by the structure of the

application main loop. Within the main loop, the application simply checks the X event

server queue for events that need to be processed and invokes the associated callback

functions in the order in which they appear on the widget’s callback list [HELL91].

In a Performer application, however, the default mode is to fork separate application,

cull, and draw processes. The control over program execution rests in the application

process, where the call to pfSync in the Performer main loop causes each process to sleep

(if necessary) until the parallel threads have finished processing their respective frames

[SGI92].

E.  MAJOR ISSUES TO BE RESOLVED

Since the Motif and Performer applications have such disparate notions of process

control in the application main loop, a paradigm that permits both levels of control must be

found before the two can be successfully integrated. The issue of graphics control is also

central to the goal of integrating Motif and Performer in a single application, since it also

complicates the handling of user input. Chapter VI will explore these issues further and



36

provide the details of how they can be resolved to successfully implement Performer with

a Motif user interface.
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VI.  IMPLEMENTING PERFORMER IN AN X WINDOWS
APPLICATION USING MOTIF

A.  CUSTOMIZATION WITH COMMAND LINE OPTIONS

Motif applications have a built-in ability, thanks to the Xt Intrinsics, to allow the user

to set certain “look and feel” parameters such as background color and border width in the

command line at execution [McMI92]. In addition to the standard command line options

supplied by the Xt Intrinsics, the programmer can specify additional resources for the

command line within the program code. This proves particularly beneficial when running

a Performer application within Motif, since start-up parameters such as multiprocessing

mode, number of pipes, window size, data file names, etc. can be set up to be accepted as

command line input. To accomplish this command line setup, the programmer must follow

some fairly straightforward guidelines that can be found in [NYE90]. The data structures

and code fragments illustrating this technique for setting the Performer multiprocessing

mode are shown in Figure 12.

Command line options, of course, are not the only way to specify Xt resources. They

can also be supplied in application specific app-defaults files, user specific .Xdefaults files,

or hard coded into the program with XtSetArgs or XtSetValues function calls. This fact can

also be exploited in a Performer application, locating default values for Performer

initialization and configuration in the app-defaults file.

B.  THE GLXCONFIG STRUCTURE AND GRAPHICS

INITIALIZATION

When the Performer graphics pipeline is initialized, a callback function, previously

registered with the pfInitPipe call, is used to open a GL window and configure it

appropriately. If theinitfuncargument to pfInitpipe is NULL, Performer will open the full

screen configured by the provided function pfInitGfx [SGI92]. Theinitfunc is registered as
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a callback, so that it may be called from the separate draw process, since the draw process

must have exclusive ownership of its GL context [OLSE93].

typedef struct {

    int mp_mode;

} AppData, *AppDataPtr;

static XtResource resources[] = {

{“mp_mode”, “Mp_mode”, XtRInt, sizeof(int),

  XtOffset(AppDataPtr, mp_mode), XtRImmediate, (caddr_t)-1 },

};

static XrmOptionDescRec options[] = {

{ “-mp”, “*mp_mode”, XrmoptionSepArg, NULL },

};

void
main(int argc, char ** argv)
{

            AppData appData;
Widget toplevel;
toplevel = XtVaAppInitialize(& app_context,

“PfApp”,
options,
XtNumber(options),
&argc, argv,
NULL);

XtGetApplicationResources(toplevel, &appData,
resources, XtNumber(resources),
NULL, 0);

if (appData.mp_mode >= 0)
pfMultiprocess(appData.mp_mode);

pfConfig();

Figure 12 Setting Command Line Options for a Performer Application



39

If Performer is to be integrated into a Motif application, it has to be configured to

render into a widget. To allow Silicon Graphics GL applications to run in a Motif

application, a special widget called GlxMdraw is provided. It provides a window with the

appropriate visual and colormaps needed for GL, based on supplied parameters. GlxMdraw

also provides callbacks for redraw, resize, input, and initialization. GlxMdraw is a subclass

of the Motif widget class XmPrimitive and has resources and defaults suitable for use with

Motif, such as the default Motif background and foreground colors [SGI93]. The

GlxMdraw widget is one element of what Silicon Graphics refers to as GLX mixed model

programming.

Rather than use the provided function pfInitGfx to handle the GL configuration, a

structure known as GLXConfig is supplied as a resource when instantiating the GlxMdraw

widget. The GLXConfig structure contains the configuration information needed to create

and render GL into an X window [SGI93]. This structure will be initialized with the values

which, when the widget is realized, will result in the configuration needed by Performer.

C.  SHIFTING GRAPHICS PIPELINE CONTROL BETWEEN

PROCESSES

As was mentioned at the close of Chapter V, a key issue in achieving the goal of

integrating Motif and Performer is the control over the graphics process. The draw process

must have exclusive hold on the graphics pipeline in order to perform its function

[OLSE93], therefore the GL window is normally created in the user-supplied initialization

function when it is invoked as a callback by the draw process. Input events are handled by

adding input devices to the GL device queue, and polling this queue during the draw

callback. This arrangement is less than ideal, since input events are normally meant for

handling by the application process. NPSNET handles this issue by creating its own event

queue from lockable shared memory (i.e. a pfDataPool), entering into this new queue any

events that must be handled by the application process [YOUN93].
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A Motif application, on the other hand, is written so that input events are handled in

the application process, specifically in the XtAppMainLoop. A way must be found, then,

for the Performer draw process to handle graphics calls while the application process

handles input events. To achieve this result, two function calls are used, the GLXlink and

GLXunlink functions. These functions allow processes to attach to and detach from the GL

graphics context. Using these functions, one creates the Motif widget set within the

application process, and then switches control of the GlxMdraw graphics context from the

application process to the draw process when the widget is realized. Since the first event

associated with the realization of the GlxMdraw widget is the ginit event, a callback

registered for that event is a convenient place to perform this context switch.

The only data necessary to transfer between processes, via shared memory, is a

simple structure that contains information about the created GlxMdraw widget sufficient to

provide the necessary arguments to the GLXlink function. As shown in Figure 13, the ginit

callback function obtains this data from the created widget and places it in the shared

memory structure. It calls the GLXunlink function, indicating to the system that the process

never intends to perform GL drawing in the window again [SGI93]. Following this call, the

pfInitPipe function is called, registering a user-supplied function as theinitfunc which in

turn will take the information from the shared data to call GLXlink. Calling GLXlink will

tell the system to allocate to the calling process those resources necessary for GL rendering

[SGI93]. The final result is a GlxMdraw widget, which is created and managed in the

application process, but whose graphics context and associated system resources are

allocated to the draw process.

D.  EXTENDING THE MOTIF APPLICATION FRAMEWORK

One of the goals of this research was to extend the object-oriented paradigm of

NPSNET beyond its present limits of entity behaviors and user interface device drivers

[YOUN93]. Program architecture can also be controlled in an object-oriented paradigm

through the use of virtual functions. By defining virtual functions in an abstract class,
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program structure can be specified in a high-level manner. If the function is merely virtual,

a default form of the function can be specified that might serve as a “working copy.”

Derived classes can use the function “as-is,” or choose to redefine the function to

accomplish a different set of tasks. Derived classes can also extend the function by calling

the base class’ function within the redefined function, followed by additional lines of code.

// This member function is called at widget realization

// it holds the key to switching control of the GL context

// to the draw process

void PfWindow::init(Widget w, GlxDrawCallbackStruct * cb)

{

 *win_x_size = cb->width;

 *win_y_size = cb->height;

 // Disconnect from the GL widget and allow the draw

 // process to connect to it

Display * display = XtDisplay(w);

Window xWindow = XtWindow(w);

// Place info in shared memory so draw process can attach

// to GLXwidget.

glx_info->display_name = XDisplayName(NULL);

glx_info->xWindow = xWindow;

// Release exclusive hold on GLXwidget.

GLXunlink(display, xWindow);

// Performer will now call openGLXconnection in the

// draw process.

pfInitPipe(pipe, &PfWindow::OpenGlxConnection);

Figure 13 Detaching from the GL context in the Application Process
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The program structure remains fixed by the base class; polymorphism allows derived

classes to follow the same basic structure with more specialized results.

// Called by the draw process. Allows the draw process

// to get the necessary information about the GlxMDraw

// widget and attach to the GL context.

void PfWindow::openGlxConnection(pfPipe * p){

 Display *display = XOpenDisplay(glx_info->display_name);

 Window glx_window = glx_info->xWindow;

 XWindowAttributes attributes;

 XGetWindowAttributes(display, glx_window, & attributes);

 int screenNo = XScreenNumberOfScreen(attributes.screen);

// Use the same configuration here that was used

// in creating the widget.

 GLXconfig * config;

 config = GLXgetconfig(display,

screenNo, regularGlxConfig);

// Find the window entry and set it to have the same

// window id of the GLXwidget’s window.

 for (int i = 0; config[i].buffer; i++)

if (config[i].buffer == GLX_NORMAL &&

config[i].mode == GLX_WINDOW)

    config[i].arg = (int)glx_window;

// Connect the GL context to the GLXwidget

 (GLXlink(display, config);

// Make it the current window.

 GLXwinset(display, glx_window);

 zbuffer(TRUE);

}
Figure 14 Attaching to the GL context in the Draw Process
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1. The PfApplication class

The result of this research was an extension to the MotifApp library defined by

Young [YOUN92]. The Application class was used as a base class from which was derived

the PfApplication class. As an unusual feature, the MotifApp library already includes the

main() function, which presumes the existence of a global pointer to an instance of the

Application class, referred to astheApplication.The main() function simply calls the

initialize() and handleEvents() methods oftheApplication. In terms of a Performer

application, then, all the initialization and configuration, as well as database creation must

occur in the initialize() method

void PfApplication::initialize (int * argcp,
char ** argv)

{
    int i; //loop variable

    pfInit();

    allocateSharedData();

    // Need for registered windows to allocate
    // their shared data also
    // before forking any cull and draw processes
    _pfWindows = (PfWindow **)_windows;

    for (i = 0; i < _numWindows; i++)
_pfWindows[i]->allocateSharedData();

    pfMultiprocess(PFMP_DEFAULT);
    pfConfig();

    _scene = pfNewScene();
    Application::initialize(argcp, argv);

    postConfigSetup();

    addWorkProcs();

}
Figure 15 The PfApplication initialize() method
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a. allocateSharedData

Most Performer applications will need to allocate shared data for the purpose

in inter-process communication. While this step is not absolutely necessary to have a

successful application, itis vital that the allocation occur after the pfInit call and prior to

the forking of individual processes at pfConfig. The empty virtual function

allocateSharedData provides the venue for this task. It is defined and left blank in the base

class so that a derived class need only implement this step if it needs to allocate specific

shared data structures.

b. postConfigSetup

The next virtual function encountered in the initialize method is the

postConfigSetup function. Again, this particular area of a Performer application is wide

open to the details of the particular program objective. The only restriction is that this

function contain the Performer calls that must follow the pfConfig call (hence the name)

and are performed prior to the simulation main loop.

c. addWorkProcs

Work procedures are the key to resolving the issue of process control between

Performer and Motif. As stated in Chapter V, a work procedure is a type of callback that is

invoked in the X event loop whenever there are no events to be processed. So the Performer

main loop can be implemented as the body of a work procedure which is never removed.

As long as the X event queue can be emptied, the work procedure can be called often

enough to sustain the desired frame rate for the Performer application. During testing, even

a continuously depressed key did not cause any slowdowns in frame rate.

d. preSimulationSetup

As stated above, certain Performer calls must occur after the call to pfConfig

and prior to the simulation main loop. The postConfigSetup function was provided to allow

the derived class to provide the specific details of this phase. In the case of NPSNET, this

phase takes seventy two seconds, performing pre-loading of files to minimize response
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time during program execution. But such a lengthy delay before the opening of the

windows is undesirable, since it may lead the user to think the system has “locked up.” The

preSimulationSetup function is provided to alleviate this problem.

Called by the postWindowSetup work procedure, which removes itself upon

completion, the preSimulationSetup function will be called after the widget set is realized,

and before the PerformerMainLoop work procedure. Any calls that can be made in the

postConfigSetup function can be made in preSimulationSetup as well, except they will now

occur after the widgets are realized.

e. LoadDatabase

The loadDatabase is a pure virtual function, causing the PfApplication class

to be an abstract class. It should be intuitively obvious that there is no such thing as a

generic simulation. You have to simulatesomething, so the programmer must supply the

body for the loadDatabase function in his derived class.

It is an arbitrary decision whether the loadDatabase function is called within

postConfigSetup or postWindowSetup. In the PfApplication class, loadDatabase is called

by postWindowSetup in order to avoid any unwanted delays in the opening of the

Performer display. Like any other virtual function in the class, however, this can be

overridden in the derived class.

f. PerformerMainLoop

The main loop of a Performer application must call pfFrame to cause the next

frame to be rendered. If pfSync is called separately from pfFrame, as shown in Figure 16,

any latency-critical processing must occur after pfSync but before pfFrame [SGI92a]. The

empty virtual function doLatencyCriticalUpdates is provided to allow derived classes to

perform this processing, if it is so desired. The remainder of the per-frame processing (i.e.

updating vehicle dynamics, time of day, etc.) is accomplished in the empty virtual function

doSimulation.
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2. Handling callbacks

The PerformerMainLoop function, and for that matter all functions implemented

as callbacks in Performer and Motif, presents a minor difficulty when using C++ classes.

C++ member functions have a hidden first argument, whose purpose is to hold thethis

pointer to the instance of the class. If the member function is called from C, as it is when

invoked as a callback, thethis pointer is not supplied, causing the remaining arguments to

be incorrect [YOUN92]. This turns out to be the case in both Performer and Xt callbacks.

Member functionscan be used to define the behavior resulting from a callback,

but at the added overhead of another function call. The static functions

_PerformerMainLoop and _postSimulationSetup provide this feature by accepting thethis

pointer as client data, and using the pointer to call the desired member function. This

method of handling callbacks within C++ classes is used exclusively in the MotifApp

library [YOUN92], and can also be used for Performer callbacks when client data can be

supplied.

3. The PfWindow Class

In addition to the creation of the GlxMDraw widget discussed above, the

PfWindow class provides a static wrapper function as callback for the GlxMDraw’s input

event, which in turn calls an empty virtual functioninput which the derived class can

redefine for itself. Most of the functionality of the PfWindow class, in fact, is defined in the

Boolean PfApplication::PerformerMainLoop()
{
    doLatencyCriticalUpdates();
    pfFrame();
    doSimulation();
    pfSync();
    return FALSE;  // prevents work procedure from

 // being removed
}

Figure 16 The Performer Main Loop
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higher level MenuWindow and MainWindow classes, for it is in these classes that the

component Motif widgets are handled [YOUN92].



48

VII.  NPSNET IN A MOTIF APPLICATION

After some initial testing with the extended MotifApp library on a simple Performer

application, the results were extremely satisfying. The question remaining was whether

NPSNET could be “reverse-engineered” to fit into this framework, and if so, what changes

needed to be made. This chapter summarizes those changes.

A.  CHANGES TO THE MAIN PROCEDURE

In the MotifApp library the main() function is already defined. Therefore, the

NPSNET main() function had to be altered so that its behavior could be desrcibed in terms

of the Application class methods initialize() and handleEvents().

The first step in this transformation was the creation of the NPSNETApplication

class, a derived class from PfApplication. Variables that were once local to the main()

function were transformed into members of this class. Then the statements within the

main() function had to be parsed into the sections preceding the call to pfConfig, those

statements after pfConfig up to the time the window is open for drawing, and the statements

from window opening to the beginning of the main loop. Pipe and channel configuration

was made a part of the NPSNETWindow class initialization method.

The NPSNETApp class does not need to fully utilize the level of abstraction provided

by the PfApplication class. Since the loading of database files, texture information, etc. is

already well-defined and integrated with the introduction frames of NPSNET, there is no

need to use the loadDatabase function. Since this is a pure virtual function, however, and

must be defined, it is defined as an empty function. The function is never called anyway,

since the NPSNETApp class redefines the postWindowSetup function.

The body of the original NPSNET main simulation loop is separated into the latency-

critical and application-specific portions, and allocated to the bodies of

doLatencyCriticalUpdates and doSimulation respectively. The layer of abstraction
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provided by the base class PfApplication is used quite easily, and enforces the Performer

application architecture to a greater extent.

Finally, the exit code executed after NPSNET receives the signal to exit is taken out

of the class, and placed in the body of the doit() function of the NPSNETQuitCmd class.

The NPSNETQuitCmd is a derived class from the MotifApp library’s QuitCmd class. It

inherits all the behaviors of the parent class, but adds the code necessary to cleanly

terminate all forked processes and call pfExit.

B.  REVISING THE USER INPUT PARADIGM

NPSNET-IV was designed to run in a GL window, with user input handled by the GL

device queue. As the draw process owns all resources associated with GL rendering, the

user input occurs in the draw process. Because of this arrangement, a user-defined device

queue allocated from shared memory was created to allow inter-process communication

about user input to take place between the application and draw processes [YOUN93].

In the Motif version of NPSNET, user input is now handled by the X event queue in

the application process, and the callbacks registered with these events provide the handling

of the input. Individual commands such as weapon firing, relocating, and environment

control can be taken out of the NPSNET main loop and distributed to objects derived from

the Cmd class. Not only does this simplify the main loop, it allows multiple user interface

components, such as hot keys, menu buttons, and scale widgets to operate on the same

command object. Fewer global state components are necessary in this arrangement, since

each command object can maintain state information about itself.

C.  THE NPSNET WINDOW

Keyboard and mouse input is handled by the GlxMDraw widget with its input

callback function, so one of the chief functions of the NPSNETWindow class during

execution is the handling of input events.

Prior to the simulation loop, though, the graphics pipeline and associated channels

must also be configured. Since the pfPipe is associated with one particular window rather
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than the main application, it follows that pipe and channel calls be handled by the

NPSNETWindow. As a derived class of the PfWindow, more than one instance of the

NPSNETWindow class can be registered with the NPSNETApplication. This would be

desirable particularly if the workstation has multiple hardware graphics channels.

Currently the NPS Graphics and Video Laboratory has one Silicon Graphics Onyx Reality

Engine with a multichannel option, and research is ongoing as to how best to utilize this

feature. Meanwhile, the PfWindow class and its derived NPSNETWindow class will

operate with a single pipe only.
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VIII.  CONCLUSIONS

A.  RUN-TIME PERFORMANCE

The advantages of using a GUI versus a keystroke interface in NPSNET is apparent

once you begin to use it. But it must not come at the expense of degraded simulation

performance. To discover whether there were any performance advantages or penalties

associated with the revised version of NPSNET, the old and new versions were run on the

same machine. The Performer DrawChannelStats function was used to display

performance data at four stationary locations in the NPSNET world, the airport, canyon,

village, and pier. The values were then compared, both with and without the addition of the

ocean object. Table 1 clearly shows that a Motif interface imposes no significant change in

the performance of NPSNET.

B.  LIMITATIONS

1. Wave complexity

As the number of wave components is increased, the ocean surface takes on more

of a random, confused appearance, thus adding to the realism of the scene. However, this

added realism comes at the expense of multiplying the total animation time by the number

of wave components specified. With an ocean modeled as an array of 1296 vertices and the

Table 1: PERFORMANCE STATISTICS TAKEN AT FOUR STATIONARY
LOCATIONS IN NPSNET

NPSNET Performance Statistics

                                     NPSNET IV.2                                   NPSNET IV under Motif

Airport             15.0 hz sustained, 10.0 hz min           15.0 hz sustained, 10.0 hz min

Canyon            15.0 hz sustained, 8.6 hz min              15.0 hz sustained, 7.5 hz min

Village             10.0 hz sustained, 5.5 hz min              10.0 hz sustained, 6.7 hz min

Pier                  20.0 hz sustained, 10.0 hz min            20.0 hz sustained, 12.0 hz min
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wave form created as a single component, the NPSNET application process can process a

single frame in 0.03 to 0.05 seconds, allowing a frame rate of twenty to thirty  frames per

second. If the same ocean is animated with a wave form of seven components, however,

the application time per frame increases to approximately 0.14 seconds, allowing a frame

rate of only seven frames per second. The level of detail of the ocean in terms of number

of vertices, and the realism of the wave form in terms of number of components, must be

chosen to achieve an acceptable compromise between frame rate and realism.

It should be pointed out here that the ocean database is organized both as a spatial

hierarchy and a simple array of vectors. Since each point in the array is computed as a

periodic function independent of other points, and because the vector array resides in

shared memory, the task of updating wave heights can be parallelized, reducing the

computation time significantly. As the number of processors available on a workstation

increases, therefore, the realism of the ocean can be increased accordingly.

2. Callbacks and C++

As discussed in Chapter VI, callbacks registered with X and Performer cannot be

C++ class member functions. A static member function was used with thethispointer given

as the client data argument, so that a member function could be called “second-hand.” This

arrangement is inefficient but necessary under the current versions of X and Performer.

 Since user input events are infrequent, there is generally no significant

performance penalty. However, this could pose a significant problem in Performer, where

pre-cull, post-cull, pre-draw, and post-draw callbacks can be registered. This can build up

to a significant performance penalty, depending on the number of nodes with callbacks, and

which process is most limiting for the desired frame rate. For instance, if an application’s

frame rate is limited by the cull process, the additional overhead imposed by an extra

function call during each pre-cull callback could cause the simulation to pass a frame

boundary and skip frames, seriously degrading performance. The draw process, on the

other hand, is not generally CPU intensive and the only callbacks executed are for those
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nodes that are added to the display list by the cull process. The extra overhead, then, is not

so significant.

One area where the static function wrapper is inadequate when implementing

Performer in C++ classes is theinitfunc supplied for the pfInitPipe function call. In this case

there is no provision for supplying client data as a parameter to theinitfunc.A workaround

was used in this implementation where a global pointer was initialized in the pfWindow’s

constructor to point to the instantiated object. This imposes a limitation of a single instance

of the pfWindow class to which Performer can draw. Since most of the workstations at the

NPS Graphics and Video laboratory have a single hardware pipeline, this limitation does

not hinder existing projects. A future workaround might be a dynamically allocated array

of global pointers and process ID’s (PID) of  sizenumPipes, wherenumPipes is also the

argument supplied to pfMultipipe. This array could then be searched in the static function

for a match of its own PID, and use the corresponding instance pointer to call the correct

member function.

3. System compatibilty

Under IRIX 4.0.5G, calls to the Iris Font Manager library caused a segmentation

fault under the GLX mixed model paradigm. The problem did not occur under IRIX 5.1.1,

which is currently installed on the two Onyx Reality Engine workstations in the lab.

Consequently, the Font Manager library is not utilized under the 4.0.5 operating system.

Silicon Graphics has been informed of this problem, and future operating system upgrades

should alleviate the situation.

C.  SUGGESTIONS FOR COMMERCIAL SOFTWARE UPGRADES

As the advantages of object-oriented programming allow C++ to gain in popularity

among software developers, Motif and the supporting Xt Intrinsics need to provide a means

of registering C++ class member functions as callbacks, and avoid the redundancy and

overhead involved with the present method of using  a static function as intermediary. The

same is true with the Performer library.
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An obvious alternative is representing Motif widgets and Performer nodes as classes

themselves, with the callback represented as a member object which is registered with the

class. This relationship is analogous to that between the PfApplication and PfWindow

classes in the application frameworks library.

D.  FUTURE WORK

This work provides a model for a more realistic ocean surface and corresponding ship

motion, built on a framework that is highly structured and extensible. Some of the areas for

future work are:

• Parallelizing the Ocean class animate() method to allow multiple wave components
without peformance penalty.

• Converting the existing NPSNET input structure into a library of command objects,
and creating new Motif-based user interface components to execute them. This has
been only partially implemented, as a proof-of-concept.

• Extending the wave model to incorporate water depth to better approximate wave
behavior near shorelines.

• Developing a means of loading, creating and saving configuration information
interactively for marine vehicles, such as RAO data, moments of inertia, shaft
horsepower, etc.

• Develop simulated weapons and sensors for ships and submarines for use in the
NPSNET environment. This may also invlove the creating of Motif-based widgets
to handle input and displays.

This work continues the evolution of NPSNET, and lays the foundation for faster

prototyping of any Performer-based application. As hardware and software capabilites

expand, the unlimited imaginations of future researchers will result in a distributed

simulation system that continues to find new uses in a modern military.



55

APPENDIX A. THE PFAPPLICATION CLASS SOURCE CODE

/*********************************/
/*This is file PfApplication.h   */
/*********************************/
2 #ifndef _PFAPPLICATION_H
3 #define _PFAPPLICATION_H
4
5 #include “Application.h”
6 #include <Performer/pf.h>
7
8 class PfWindow;
9
10class PfApplication : public Application
11{
12
13    friend class PfWindow;
14
15#if (XlibSpecificationRelease>=5)
16    friend void main ( int, char ** );
17#else
18    friend void main ( unsigned int, char ** );
19#endif
20
21
22
23    protected:
24
25 virtual void allocateSharedData() {};
26 virtual void loadDatabase() = 0;
27 virtual void postConfigSetup() {};
28 virtual void preSimulationSetup() {};
29 virtual void doLatencyCriticalUpdates() {};
30 virtual void doSimulation() {};
31
32 static Boolean _PerformerMainLoop(XtPointer);
33 static Boolean _postWindowSetup(XtPointer);
34
35 static void mapCB(Widget, void *, XEvent *);
36 virtual void map(XEvent *);
37
38
39
40 virtual Boolean PerformerMainLoop();
41 virtual Boolean postWindowSetup();
42
43 PfWindow ** _pfWindows;
44
45 void addWorkProcs();
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46
47 XtWorkProcId workProc, tempWorkProc;
48
49 pfScene *_scene;
50    // Functions to handle Xt interface
51
52#if (XlibSpecificationRelease>=5)
53    virtual void initialize ( int *, char ** );
54#else
55    virtual void initialize ( unsigned int *, char ** );
56#endif
57
58 pfScene * scene() {return _scene;}
59
60    public:
61
62 PfApplication( char *);
63
64 virtual ~PfApplication(){};
65
66};
67
68extern PfApplication * thePfApplication;
69
70#endif
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/**********************************/
/*This is file PfApplication.C    */
/**********************************/
1#include “PfApplication.h”
2 #include “PfWindow.h”
3
4 #include <Performer/pf.h>
5 #include <signal.h>
6 #include <stream.h>
7
8 extern PfApplication * thePfApplication = NULL;
9
10PfApplication::PfApplication(char * name) :
11  Application(name)
12{
13    thePfApplication = this;
14}
15
16#if (XlibSpecificationRelease>=5)
17    void PfApplication::initialize ( int * argcp,
18 char ** argv)
19#else
20    void PfApplication::initialize (unsigned int * argcp,
21 char ** argv)
22#endif
23{
24    int i; //loop variable
25
26    pfInit();
27
28#ifdef DEBUG
29    pfNotifyLevel(PFNFY_DEBUG);
30#else
31    pfNotifyLevel(PFNFY_WARN);
32#endif
33
34    allocateSharedData();
35
36    // Need for registered windows to allocate
37    // their shared data also
38    // before forking any cull and draw processes
39    _pfWindows = (PfWindow **)_windows;
40
41    for ( i = 0; i < _numWindows; i++ )
42 _pfWindows[i]->allocateSharedData();
43
44    pfMultiprocess(PFMP_DEFAULT);
45    pfConfig();
46
47    _scene = pfNewScene();
48    Application::initialize(argcp, argv);
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49
50    XtAddEventHandler(baseWidget(),
51 StructureNotifyMask, FALSE,
52     (XtEventHandler)&PfApplication::mapCB, 0);
53
54    postConfigSetup();
55
56    addWorkProcs();
57
58}
59
60// This Xt callback is called when the application shell
61// widget is stowed or unstowed.
62void PfApplication::mapCB(Widget, void * userdata,
63  XEvent * event)
64{
65    PfApplication * obj = (PfApplication *) userdata;
66
67    obj->map(event);
68}
69
70void PfApplication::map(XEvent * event)
71{
72
73    static pid_t draw_pid;// draw process ID.
74
75 // Xt calls draw_workproc()
76 // when no events are pending.
77    if (event->type == MapNotify)
78    {
79 // Resume the stopped draw process
80 // (see below).
81 if (draw_pid > 0)
82     kill(draw_pid, SIGCONT);
83
84 // Get the draw processes ID.  If
85 // there is no draw process, don’t
86 // worry about suspending it.
87 else if (draw_pid == 0)
88 {
89     long mode = pfGetMultiprocess();
90
91     if (mode & PFMP_FORK_DRAW)
92 draw_pid = pfGetPID(0, PFPROC_DRAW);
93     else
94 draw_pid = -1;
95 }
96    }
97



59

98 // Nothing is done when the
99 // application is iconified.
100    if (event->type == UnmapNotify)
101    {
102 // If there is a separate draw
103 // process, it must be temporarily
104 // stopped, otherwise it busy-waits.
105 if (draw_pid > 0)
106     kill(draw_pid, SIGSTOP);
107    }
108}
109
110void PfApplication::addWorkProcs()
111{
112
113    // This is how we implement the Performer main loop
114 // in a Motif Application.
115    workProc = XtAppAddWorkProc(_appContext,
116     (XtWorkProc)&PfApplication::_PerformerMainLoop,
117     (XtPointer)this);
118
119    // This takes care of one-time-only stuff after the
120 // application enters the XtAppMainLoop. It is
121 // added last so it will be executed first.
122    tempWorkProc = XtAppAddWorkProc(_appContext,
123 (XtWorkProc)&PfApplication::_postWindowSetup,
124 (XtPointer)this);
125
126}
127
128// These are the Xt work procedures that are called
129// after the Motif widgets are realized and the Xt event
130// loop begins. They are implemented as static
131// “wrappers” which receive a pointer to the object
132// instance and call the instance-specific methods.
133// This allows these methods to be redefined by
134// derived classes.
135
136Boolean PfApplication::_PerformerMainLoop
137 (XtPointer clientdata)
138{
139    PfApplication *obj = (PfApplication *)clientdata;
140 return obj->PerformerMainLoop();
141}
142
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143Boolean PfApplication::PerformerMainLoop()
144{
145    doLatencyCriticalUpdates();
146    pfFrame();
147    doSimulation();
148    pfSync();
149    return FALSE;  // prevents work procedure from
150   // being removed
151}
152
153Boolean PfApplication::_postWindowSetup
154 (XtPointer clientdata)
155{
156    PfApplication *obj = (PfApplication *)clientdata;
157 return obj->postWindowSetup();
158}
159
160
161
162Boolean PfApplication::postWindowSetup()
163{
164    loadDatabase();
165
166    preSimulationSetup();
167
168    return TRUE;
169}
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APPENDIX B. THE PFWINDOW CLASS SOURCE CODE

/******************************************************/

/*This is file PfWindow.h                             */

/******************************************************/

1 #ifndef _PFWINDOW_H

2 #define _PFWINDOW_H

3

4 #include "MenuWindow.h"

5 #include <Performer/pf.h>

6 #include <Xm/Xm.h>

7 #include <X11/Xirisw/GlxMDraw.h>

8

9 class PfWindow : public MenuWindow

10 {

11 friend class PfApplication;

12  protected:

13 virtual void initialize();

14 virtual void createMenuPanes();

15 virtual Widget createWorkArea(Widget);

16

17 virtual void createCommandWindow();

18 virtual void setupChannel();

19

20 static void redrawCB (Widget,XtPointer,XtPointer);

21 static void inputCB  (Widget,XtPointer,XtPointer);

22 static void DrawChannel(pfChannel *, void *);

23 static void OpenGlxConnection(pfPipe *);

24

25 virtual void openGlxConnection(pfPipe *);

26 virtual void init(Widget, GlxDrawCallbackStruct *);

27         virtual void resize(Widget,GlxDrawCallbackStruct*);
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28 virtual void input (XtPointer) {/* Empty */};

29

30 Widget parent,

31 _commandWindow,

32 glw;

33 pfPipe *pipe;

34 pfChannel *channel;

35

36 static pfLight * Sun;

37 static pfEarthSky * ESky;

38 float chanNear, chanFar,

39 chanFOVhorizontal,

40 chanFOVvertical;

41 void * arena;

42  public:

43 PfWindow(char * name);

44 pfChannel * theChannel() {return channel;}

45 virtual void allocateSharedData();

46 };

47

48 extern PfWindow * thePfWindow;

49

50 typedef struct {

51  char * display_name;

52  Window xWindow;

53 } glx_info_struct;

54

55 extern glx_info_struct * glx_info;

56

57 extern int * win_x_size;

58 extern int * win_y_size;

59 #endif
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/******************************************************/

/* This is file PfWindow.C                            */

/******************************************************/

1 #include "PfWindow.h"

2 #include "PfApplication.h"

3 #include <stream.h>

4

5 pfLight * PfWindow::Sun;

6 pfEarthSky * PfWindow::ESky;

7

8 // This list describes the GLX widget

9 // to be created. GLX_NOCONFIG means

10 // "give me the biggest."

11 static GLXconfig regularGlxConfig [] = {

12  GLX_NORMAL, GLX_BUFSIZE, GLX_NOCONFIG,

13  GLX_NORMAL, GLX_ZSIZE, GLX_NOCONFIG,

14  GLX_NORMAL, GLX_DOUBLE,TRUE,

15  GLX_NORMAL, GLX_RGB, TRUE,

16  GLX_NORMAL, GLX_WINDOW,GLX_NONE,

17  0, 0, 0,

18 };

19 extern PfWindow * thePfWindow = NULL;

20 extern glx_info_struct * glx_info = NULL;

21

22

23

24

25
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26 // The constructor doesn’t do much, just get things

27 // allocated mainly, and initialize the external global

28 // pointer to the created object.

29 PfWindow::PfWindow(char * name) : MenuWindow(name)

30 {

31  chanNear = 0.1f;

32  chanFar = 10000.0f;

33  chanFOVhorizontal = 45.0f;

34  chanFOVvertical = -1.0f;

35  thePfWindow = this;

36 }

37

38 // This function is called by the PfApplication prior

39 // to pfConfig() so forked processes can access

40 // the pfMalloc’ed data structures

41 void PfWindow::allocateSharedData()

42 {

43 arena = pfGetSharedArena();

44

45 // Place the window size in shared memory so draw process

46 // can access it

47 win_x_size = (int *)pfMalloc(sizeof(int),arena);

48 win_y_size = (int *)pfMalloc(sizeof(int),arena);

49

50 // Initialize to reasonable values

51 *win_x_size = XMAXSCREEN;

52 *win_y_size = YMAXSCREEN;

53 // Put glx_info structure in shared memory for

54 // the openGlxConnection function to do its magic

55 glx_info = (glx_info_struct *)

56 pfMalloc(sizeof(glx_info_struct),arena);

57 }
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58 // This initialization function provides a basic framework

59 // for configuring a single pipe and channel. A derived

60 // class could build on this framework by redefining an

61 // initialize() function that called the

62 // PfWindow::initialize() function, followed by

63 // additional steps such as creating a PfEarthSky, etc.

64 // The rewritten function could also change the default

65 // values of such variablesas chanNear or

66 // chanFOVhorizontal.

67 void PfWindow::initialize()

68 {

69  MenuWindow::initialize();

70  createCommandWindow();

71  pipe = pfGetPipe(0);

72  channel = pfNewChan(pipe);

73  pfChanNearFar(channel, chanNear, chanFar);

74  pfChanFOV(channel, chanFOVhorizontal, chanFOVvertical);

75  Sun = pfNewLight(NULL);

76  ESky = pfNewESky();

77  pfESkyMode (ESky, PFES_BUFFER_CLEAR, PFES_SKY_CLEAR);

78  pfChanESky(channel, ESky);

79 // Since the DrawChannel function is static, we need

80 // to pass which instance of the PfWindow class is calling

81  pfChanDrawFunc(channel, &PfWindow::DrawChannel);

82  pfChanScene(channel, thePfApplication->scene());

83 }

84 // The next two functions are defined, but empty.

85 // This gives the user the option of whether or not

86 // to implement them in his application.

87 void PfWindow::createMenuPanes ()

88 {//Empty}
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89 void PfWindow::createCommandWindow()

90 {//Empty}

91

92 // This creates the GlxMDraw widget in which the

93 // Performer rendering will take place

94 Widget PfWindow::createWorkArea ( Widget w)

95 {

96  parent = w;

97  Arg wargs[10];

98

99

100  // Create the gl widget.

101  int n = 0;

102  XtSetArg(wargs[n], GlxNglxConfig,

103 regularGlxConfig); n++;

104  glw = GlxCreateMDraw(parent, "glwidget", wargs, n);

105

106

107  // Add callbacks to the glw widget.

108  XtAddCallback(glw, GlxNginitCallback,

109 &PfWindow::redrawCB, (XtPointer) this);

110 XtAddCallback(glw, GlxNexposeCallback,

111 &PfWindow::redrawCB, (XtPointer) this);

112 XtAddCallback(glw,GlxNresizeCallback,

113 &PfWindow::redrawCB, (XtPointer) this);

114

115 // Add in a callback for processing input keys

116 // from the keyboard.

117  XtAddCallback(glw, GlxNinputCallback,

118 &PfWindow::inputCB, (XtPointer) this);

119  return glw;

120 }
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121 // Another empty function that gives the designer the

122 // chance to customize the application.

123 void PfWindow::setupChannel()

124 {//Empty}

125

126

127 // This is a static callback wrapper. It checks the type

128 // of callback and invokes the proper member function

129 void PfWindow::redrawCB(Widget w,

130 XtPointer clientdata,

131 XtPointer calldata)

132 {

133  PfWindow *obj = (PfWindow *)clientdata;

134  GlxDrawCallbackStruct *cb = (GlxDrawCallbackStruct *)calldata;

135

136  switch (cb->reason)

137  {

138 case GlxCR_GINIT:

139  obj->init(w, cb);

140  break;

141 case GlxCR_RESIZE:

142  obj->resize(w, cb);

143  break;

144 default:

145  break;

146  }

147 }
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148 // This member function is called at widget realization

149 // it holds the key to switching control of the GL context

150 // to the draw process

151 void PfWindow::init(Widget w, GlxDrawCallbackStruct * cb)

152 {

153  *win_x_size = cb->width;

154  *win_y_size = cb->height;

155  // Disconnect from the GL widget and allow the draw

156  // process to connect to it

157 Display * display = XtDisplay(w);

158 Window xWindow = XtWindow(w);

159

160 // Place info in shared memory so draw process can attach

161 // to GLXwidget.

162 glx_info->display_name = XDisplayName(NULL);

163 glx_info->xWindow = xWindow;

164

165 // Release exclusive hold on GLXwidget.

166 GLXunlink(display, xWindow);

167

168 // Performer will now call openGLXconnection in the

169 // draw process.

170 pfInitPipe(pipe, &PfWindow::OpenGlxConnection);

171 }

172

173 // Called anytime a resize event occurs. Resets the

174 // window parameters

175 void PfWindow::resize(Widget, GlxDrawCallbackStruct * cb)

176 {

177  *win_x_size = cb->width;

178  *win_y_size = cb->height;

179 }
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180 // A simple draw function, this will most likely

181 // be redefined by derived classes

182 void PfWindow::DrawChannel(pfChannel * channel, void *)

183 {

184  pfLightOn(Sun);

185  pfClearChan(channel);

186  pfDraw();

187 }

188 // Static wrapper for the member function

189 void PfWindow::OpenGlxConnection(pfPipe * p)

190 {

191 // invoke the openGlxConnection this way so that

192 // derived classes can expand on the function. We use a

193 // global object pointer since there is no way to pass

194 // user data to this function

195

196 thePfWindow->openGlxConnection(p);

197 }

198

199 // Called by the draw process. Allows the draw process

200 // to get the necessary information about the GlxMDraw

201 // widget and attach to the GL context.

202 void PfWindow::openGlxConnection(pfPipe * p)

203 {

204  Display * display =

205 XOpenDisplay(glx_info->display_name);

206  Window glx_window = glx_info->xWindow;

207

208  XWindowAttributes attributes;

209  XGetWindowAttributes(display, glx_window, & attributes);

210  int screenNo = XScreenNumberOfScreen(attributes.screen);

211
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212 // Use the same configuration here that was used

213 // in creating the widget.

214  GLXconfig * config;

215  config = GLXgetconfig(display,

216 screenNo, regularGlxConfig);

217  if (config == 0)

218  {

219         fprintf(stderr,

220               "No visual found to match request in GLXgetconfig\n");

221 exit(1);

222  }

223 // Find the window entry and set it to have the same

224 // window id of the GLXwidget’s window.

225  for (int i = 0; config[i].buffer; i++)

226 if (config[i].buffer == GLX_NORMAL &&

227  config[i].mode == GLX_WINDOW)

228 {

229  config[i].arg = (int)glx_window;

230 }

231

232 // Connect the GL context to the GLXwidget created by the

233 // application process.

234  if (GLXlink(display, config))

235  {

236 fprintf(stderr, "Error in GLXlink\n");

237 exit(1);

238  }

239 // Make it the current window.

240  GLXwinset(display, glx_window);

241

242  zbuffer(TRUE);

243 }
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244 // Callback wrapper for member function

245 void PfWindow::inputCB(Widget, XtPointer clientdata, XtPointer
calldata)

246 {

247 PfWindow * obj = (PfWindow *)clientdata;

248 obj->input(calldata);

249 }

250

251 // Performer calls these GL routines every frame.

252 // They are very slow because they require a round trip

253 // to the X server. These are much faster replacements.

254

255 extern "C" void

256 getorigin(long * x, long * y)

257 {

258  *x = 0;

259  *y = 0;

260 }

261

262 extern "C" void

263 getsize(long * x, long * y)

264 {

265  *x = *win_x_size;

266  *y = *win_y_size;

267 }
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